## One-Pot, Four-Different-Component Annulations: Flexible and Efficient Conversion of n-Sized Cycloalkenones into n+4 Alkenolides

Gary H. Posner, <sup>1a#</sup> Edward Asirvatham, <sup>1b</sup> Kevin S. Webb, and Sang-sup Jew, <sup>1c</sup>

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA

Abstract: Five-, six-, and seven-membered conjugated cycloalkenones undergo one-pot conjugate addition with tri-n-butyltinlithium followed by 1,4-addition to vinyl ketones and then aldol addition to aldehydes leading to cyclic hemiketals 2. Lead tetraacetate oxidative fragmentation produces various 4-atom enlarged, vicinally disubstituted, regiospecifically and stereospecifically unsaturated macrolides 3.

We have recently developed sequential <u>Michael-Michael Michael ring closure</u> (MIMI-MIRC) reactions as an easy, one-pot procedure forming four new bonds and annulating 6-membered rings via connection of 2+2+2 carbon fragments.<sup>2</sup> This protocol allows ring enlargement of cycloalkenones into the corresponding n+4 cyclic ketones and of alkenolides into the corresponding n+4 cyclic lactones. We report here that cycloalkenones undergo one-pot sequential <u>Michael-Michael-aldol-ring closure</u> (MIMI-ARC) reactions, initiated by tri-<u>n</u>-butyltinlithium,<sup>3</sup> leading to cyclic hemiketals 2 which are oxidatively fragmented by lead tetraacetate<sup>4</sup> to produce efficiently various 4-atom enlarged, vicinally disubstituted (<u>trans and cis</u>), regiospecifically and stereospecifically unsaturated macrolides 3 (eq. 1).<sup>5</sup> These tandem addition reactions were carried out between -65° to -78°C in tetrahydrofuran solvent using slightly more than one equivalent of each successive component; after TLC analysis of a very small aliquot indicated that the first two components had reacted, then the next component was added to the reaction mixture and so on.

| 1. Lis                                            | nBu <sub>3</sub> | R P                   |                   | R                | o<br>↓ |
|---------------------------------------------------|------------------|-----------------------|-------------------|------------------|--------|
| 0 2. 0                                            |                  | HOuld                 | R                 | N° T             | R      |
| $\bigcirc \frown$                                 | R                |                       | DAc) <sub>4</sub> |                  | (1)    |
| 1 3. R'Cl                                         | HO               | 2 SnBu <sub>3</sub>   |                   | 3 ~              |        |
| % Yield                                           |                  |                       |                   |                  |        |
| <u>R'</u>                                         | <u>R</u>         | 2 3                   | 3                 | <u>trans/cis</u> |        |
| Me                                                | Et               | $61.5 \times 77 = 47$ | a                 | 0.7              |        |
| CH2=CH                                            | Et               | 50 x 79 = 39.         | 5 b               | 2.6              |        |
| o-BrC <sub>6</sub> H <sub>4</sub>                 | Et               | $67.6 \times 70 = 47$ | c                 | 5.3              |        |
| o-IC <sub>6</sub> H <sub>4</sub>                  | Et               | 57.5 x $64 = 37$      | d                 | 2.6              |        |
| PhCH <sub>2</sub>                                 | Et               | 50 x 87 = 43          | .5 e              | 1.5              |        |
| o-BrC <sub>6</sub> H <sub>4</sub> CH <sub>2</sub> | Ph               | 43 x 70 = 30          | f                 | 1.0              |        |

Several aspects of eq. 1 are noteworthy. Although the six-membered rings of hemiketal intermediates 2 are formed via 2+2+2-annulations and no uncyclized hydroxyketones are detected, this sequence involves a 2-carbon plus 2-carbon plus carbon-oxygen assembly, and therefore the overall transformation depicted in eq. 1 represents cyclic ketone + lactone interconversions; formally, the acyl carbon-vinylic linkage in the reactant cycloalkenone is oxidatively cleaved and in its place is stitched a 3-carbon atom plus 1-oxygen atom spacer group, analogous to the 1oxygen atom spacer group inserted via Baeyer-Villiger conversion of ketones into esters. In equation 1, the reactant carbon-carbon double bond undergoes inversion of configuration (i.e., cis  $\rightarrow$  trans); macrolides 3 all show a 15-16 Hz coupling constant for the vinylic hydrogen atoms in their 400 MHz <sup>1</sup>H NMR spectra. Exclusive formation of such trans-alkenolides is due to the uniquely trans-relationship between bonds a and b in hemiketals 2 and to the concerted antielimination during lead tetraacetate-promoted oxidative fragmentation<sup>4</sup> of these  $\gamma$ -hydroxytin intermediates. The stereochemistry of the vicinal substituents ranges between trans:cis ratios of 0.7 - 5.3; attempts to epimerize the acyl side-chain produced only  $\alpha$ -enones via  $\beta$ -elimination of the macrolide carboxylate group. The overall yields from simple cyclohexenone to structurally much more complex, chromatographically purified macrolides 3 range from 30-47%. Several of the transformations shown in eq. 1 were performed on gram-scale. Cycloheptenone and cyclopentenone also undergo similar transformations.

To illustrate some of the substantial potential of this four-different-component MIMI-ARC fragmentation sequence, iodophenyl macrolide trans-3d was subjected to iodine-metal exchange<sup>7</sup> and in situ cyclization to produce polyfunctionalized tricyclic indanol<sup>6</sup> 4 in 27% overall yield from cyclohexenone using only three reaction vessels (eq. 2). Likewise, cyclohexenone was converted simply and conveniently into macrolide  $5^6$ ; removal of the phthalimide protecting group,<sup>8</sup> intramolecular cyclization, and aromatization followed by diazomethane esterification produced pure 2,3-disubstituted quinolines 6, R = Et and Ph. $^{6,9}$  in 27 and 31% overall yields, respectively, without purification of any of the intermediates leading to final products 6 (eq. 3). Often substituted quinolines are prepared by attaching substituents to a preformed quinoline ring; eq. 3 represents a complementary procedure which constitutes a new quinoline synthesis. The dotted lines in tricycle 4 and in quinoline 6 are meant to indicate the original three structural units which have been combined in these convergent procedures. As a variation on this theme but yet still involving one-pot construction of an intermediate cyclic hemiketal (i.e., 7), eq. 4 represents a short total synthesis of phorocantholide I (8),<sup>5e</sup> a natural 10-membered ring lactone insect secretion, in overall 27.5% from cyclohexenone.

The success of the one-pot, multicomponent annulations shown in equations 1-4 strongly indicates that such a protocol represents a flexible and efficient synthetic method of substantial preparative utility. We are actively exploring further applications.

## Acknowledgement

We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society (AC-18923) and the NSF (CHE-86-07974) for financial support.





## References

- 1987 Maryland Chemist of the Year Awardee; 1. (a)
- 1987 Ralph H. Potts Memorial Fellowship Awardee; (c) Visiting Professor on leave from (b) Seoul National University, Seoul, Korea.
- 2. (a) Posner, G. H. and Asirvatham, E., Tetrahedron Lett., 1986, 27, 663; (b) Posner, G. H., Chem. Revs., 1986, 86, 831.
- Still, W. C., J. Am. Chem. Soc., 1977, 99, 4836. 3.
- 4. Nakatami, K. and Isoe, S., Tetrahedron Lett., 1984, 25, 5335 and 1985, 26, 2209.
- For related ring-enlarging oxidative fragmentation reactions, see: (a) Milenkov, B., 5. Guggisberg, A. and Hesse, M., <u>Tetrahedron Lett.</u>, 1987, 315; (b) Schreiber, S. L., Hulin, B. and Liew, W.-F., <u>Tetrahedron</u>, 1986, 42, 2945; (c) Schreiber, S. L., Sammakia, T., Hulin, B. and Schulte, G., J. Am. Chem. Soc., **1986**, 108, 2106; (d) Freire, R., Marrero, J. J., Rodriguez, M. J. and Suarez, E., <u>Tetrahedron Lett.</u>, **1986**, <u>27</u>, 383; (e) Suginome, H. and Yamada, S., <u>Tetrahedron Lett.</u>, 1985, 26, 3715, and references therein; (f) Kostova, K. and Hesse, M., <u>Helv. Chim. Acta</u>, 1984, 67, 1713; (g) Beckwith, A. L. J., Kazlauskas, R. and Syner-Lyons, M. R., <u>J. Org. Chem.</u>, 1983, <u>48</u>, 4718.
- 6. All new compounds were characterized spectroscopically and by combustion analysis and/or high resolution mass spectrometry.
- 7. Corey, E. J. and Kuwajima, I., <u>J. Am. Chem. Soc.</u>, 1970, <u>92</u>, 396.
- 8.
- Wolfe, S. and Hasan, S. K., <u>Can. J. Chem.</u>, **1970**, 48, 3572. The following preparation of quinoline 6, R=Ph, is an illustrative procedure: To tri-n-butyltinlithium (1.80 mmol) in 10 ml of THF at  $-78^{\circ}$ C under an inert atmosphere was added 9. dropwise over 2 minutes 2-cyclohexenone (159 mg, 1.65 mmol) in 2 ml of THF. After 25 minutes at  $-78^{\circ}$ C, phenyl vinyl ketone (247 mg, 1.87 mmol) in 2 ml of THF was added dropwise during 10 minutes. After 1.5 hours, phthalimide protected o-aminobenzaldehyde (533 mg, 2.12 mmol) in 3 ml of THF and 0.5 ml of DMF was added dropwise during 10 minutes. Stirring was continued for 16 hours at  $-65^{\circ}$ C. Saturated aqueous ammonium chloride was added and the reaction mixture was allowed to warm slowly to room temperature. Standard work-up gave a crude intermediate which was dissolved in 5 ml of benzene and added over 5 minutes to a suspension of lead tetraacetate (766 mg, 1.73 mmol) in refluxing benzene. Refluxing for 3.5 hours and standard work-up gave crude macrolide 5, R=Ph, which were dissolved in 6 ml of benzene at 23°C. Methylamine (40% aqueous, 5 ml) was added and stirring was continued at 23°C for 72 hours. After removal of water under reduced pressure, benzene was added and any remaining water was removed azeotropically producing a green oil which was dissolved in 20 mL of chloroform at  $0^{\circ}$ C. Diazomethane (16.3 mmol) in 250 ml of diethyl ether was added at 0°C. After 20 minutes, glacial acetic acid was added. Standard work-up and column chromatography (1:9 ether:hexane) produced quinoline 6, R=Ph (178.4 mg 31.2%): HRMS m/z calcd. for  $C_{23}H_{23}NO_2$ : 345.1729. Found: 345.1733; <sup>1</sup>H NMR (CDCl<sub>3</sub>) & 7.82 (d, 2H, J = 8 Hz), 8.03 (s, 1H), 8.13 (d, 1H, J = 8.4 Hz), 5.33 (m, 1H, J = 15.2 Hz after decoupling), 5.54 (m, 1H, J = 15.2 Hz after decoupling), 3.66 (s, 3H), 3.48 (d, 2H, J = 6.4 Hz); IR (neat): 960 cm<sup>-1</sup> (trans double bond).

(Received in USA 24 June 1987)